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Abstract

Recent advances have illustrated that it is often possible to learn to solve linear in-
verse problems in imaging using training data that can outperform more traditional
regularized least squares solutions. Along these lines, we present some extensions
of the Neumann network, a recently introduced end-to-end learned architecture
inspired by a truncated Neumann series expansion of the solution map to a regular-
ized least squares problem. Here we summarize the Neumann network approach,
and show that it has a form compatible with the optimal reconstruction function for
a given inverse problem. We also investigate an extension of the Neumann network
that incorporates a more sample efficient patch-based regularization approach.

1 Learning to solve inverse problems

We consider solving linear inverse problems in imaging in which a p-pixel image, β? ∈ Rp (in
vectorized form), is observed viam noisy linear projections as y =Xβ? + ε, whereX ∈ Rm×p and
ε ∈ Rm is a noise vector. The problem of estimating β? from y is referred to as image reconstruction,
and a typical estimate is given by solving the regualarized least squares problem

β̂ = argmin
β

1

2
‖y −Xβ‖22 + r(β). (1)

where r(·) is a regularizer. Classical image reconstruction methods specify a choice of regularizer to
promote piecewise smoothness of the reconstruction, sparsity in some dictionary or basis, or other
geometric properties.

However, an emerging body of research explores the idea that training data can be used to learn to
solve inverse problems using neural networks. At a high level, existing learning-based approaches to
solving inverse problems can be categorized as either decoupled or end-to-end.

Decoupled approaches first learn a representation of the data that is independent of the forward
modelX , followed by a reconstruction phase that usesX explicitly. Existing methods in this vein
include using training images to learn a low-dimensional image manifold captured by the range of a
generative adversarial network (GAN) and constraining the estimate β̂ to lie on this manifold [1], or
learning a denoising autoencoder that can be treated as a regularization step (i.e., proximal operator)
within an iterative reconstruction scheme [2, 3].

End-to-end approaches incorporate the forward modelX directly into the network architecture during
both training and testing, and are optimized for a specific X or class of X’s. Many end-to-end
approaches are based on “unrolling” finitely many iterations of an optimization algorithm for solving
(1), where instances of the regularizer (or its gradient or proximal operator) are replaced by a neural
network to be trained; see [4, 5, 6, 7, 8] among others.

The advantage of a decoupled approach is that the learned representation can be used for a wide variety
of inverse problems without having to retrain. However, this flexibility comes with a high price in
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terms of sample complexity. Learning a generative model or a denoising autoencoder fundamentally
amounts to estimating a probability distribution and its support over the space of images; let us denote
this distribution as P (β). On the other hand, ifX is known at training time, then we only need to
learn the conditional distribution P (β|Xβ), which can require far fewer samples to estimate [9].

To make this idea more precise, consider the problem of finding the MSE optimal reconstruction
function in the noiseless setting:

ρ∗ = argmin
ρ

Eβ∼P (β)

[
‖β − ρ(Xβ))‖2

]
. (2)

Then ρ∗ is characterized as follows.
Proposition 1. Let X ∈ Rm×p, m ≤ p, be full rank, and let X⊥ ∈ Rp−m×p be a matrix whose
rows form an orthonormal basis for the nullspace of X . Then the MSE-optimal reconstruction
function ρ∗ in (2) is given by

ρ∗(y) =X+y +X>⊥E[X⊥β |X+y] (3)

where X+ is the pseudoinverse of X and E[X⊥β |X+y] is the conditional expectation of X⊥β
givenX+y.

We omit the proof of Proposition 1 for brevity, but the technique is similar to those used in [10] to
derive the expressions for the MSE optimal autoencoder for a given data distribution.

This proposition shows that the optimal reconstruction function only requires estimating a conditional
expectation of the component of the image in the nullspace of the linear forward model, or implicitly
a conditional probability density rather than the full probability density over the space of all images.
Therefore, in settings where training data is limited, end-to-end approaches are expected to outperform
decoupled approaches due to their lower sample complexity. It also implies the end-to-end networks
should have a structure compatible with (2) if they are to well-approximate the MSE optimal
reconstruction function.

The focus of this work is on the recently-proposed Neumann network architecture as an end-to-end
approach for learning to solve inverse problems [11]. Here we summarize the Neumann network
architecture, and give it a new interpretation in light of Proposition 1. We also introduce an extension
of Neumann networks to the case of a patch-based regularization strategy, which further improves the
sample complexity of the approach.

2 Neumann Networks

Neumann networks are motivated by the regularized least squares optimization problem (1) in the
special case where the regularizer r is quadratic. In particular, assume r(β) = 1

2β
>Rβ so that

∇r(β) = Rβ for some matrixR ∈ Rp×p. A necessary condition for β? to be a minimizer of (1) in
this case is

(X>X +R)β? =X>y (4)
If the matrix on the left-hand side of (4) is invertible, the solution is given by

β? = (X>X +R)−1X>y. (5)

To approximate the matrix inverse in (5), the authors of [11] use a Neumann series expansion for the
inverse of a linear operator [12], given by A−1 = η

∑∞
k=0(I − ηA)k, which converges provided

‖I − ηA‖ < 1. Applying this series expansion to the matrix inverse appearing in (5), we have
β? =

∑∞
j=0(I − ηX>X − ηR)j(ηX>y). Truncating this series to B + 1 terms, and replacing

multiplication by the matrix R with a general learnable mapping R : Rp → Rp, motivates an
estimator β̂ of the form

β̂(y) :=
B∑

j=0

([I − ηX>X](·)− ηR(·))j(ηX>y). (6)

The estimator above becomes trainable by letting R = Rθ be a neural network depending on a
vector of parameters θ ∈ Rq to be learned from training data, along with the scale parameter η.
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Figure 1: Neumann network architecture. Unlike other networks based on unrolling of iterative optimization
algorithms, the series structure of Neumann networks lead naturally to additional “skip connections” (highlighted
in red) that route the output of each dashed block to directly to the output layer.

Any estimator β̂(y) = β̂(y;θ, η) specified (6) with trainable network R = Rθ is called a Neumann
network in [11]. Figure 1 shows a block diagram which graphically illustrates a Neumann network.
The main architectural difference with Neumann networks over related unrolling approaches is the
presence of additional “skip connections” that arise naturally due to the series structure. Empirical
evidence in [11] suggests these additional skip connections may improve the optimization landscape
relative to other architectures, and make Neumann networks easier to train.

2.1 Preconditioning

Efficiently finding a solution to the linear system (4) using an iterative method can be challenging
when the matrixX>X +R is ill-conditioned. This suggests that the Neumann network, which is
derived from a Neumann series expansion of the system in (4), may benefit from preconditioning.

Starting from (4), for any λ > 0 we have (X>X + λI)β? + (R − λI)β? = X>y. Applying
Tλ := (X>X + λI)−1 to both sides and rearranging terms gives (I − λTλ + R̃)β? = TλX

>y.
where R̃ = TλR. Following the same steps used to derive the Neumann network gives the modified
estimator

β̂pc(y) =
B∑

j=0

(λTλ(·)− R̃(·))jTλX>y (7)

which is called a preconditioned Neumann network in [11]. Here R̃ = R̃θ is a trainable mapping
depending on parameters θ.

2.2 Connection with Proposition 1

The Neumann network estimators in (6) and (7) can be interpreted as approximating the MSE
optimal reconstruction function in Proposition 1. To see this, observe that the pseudo-inverse
X+y = (X>X)−1X>y is given by the Neumann series X+y = η

∑∞
k=0(I − ηX>X)kX>y.

The preconditioned Neumann network estimator β̂(y) has the form

β̂(y) = η
B∑

k=0

(I − ηX>X)kX>y + β̂R(y) (8)

where β̂R(y) collects all terms that depend on R. The preconditioned Neumann network more
directly approximates ρ∗(y) since the initial iterate β̃(0) = TλX

>y = (X>X + λI)−1X>y
already well-approximatesX+y provided λ > 0 is small.

2.3 Patchwise Regularization

Here we present an extension to the Neumann network which incorporates a learned patchwise
regularizer. For large images, learning an accurate regularizer may require more samples than are
practical to gather due to cost or time constraints, leading to inaccurate reconstructions or overfitting.

However, empirical evidence suggests there is considerable low-rank and other subspace structure
shared among small patches of natural images [13]. Redundancy and subspace structure across image
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Figure 2: Reconstructions produced for the deblurring problem at different training set sizes, along with the
associated residual images, which are scaled by 6x.

patches permits learning parameters of statistical models for image patches using training data, like
Gaussian mixture models with low-rank covariance structure [14, 15]. We propose leveraging the
highly structured nature of image patches in the learned component of the Neumann network.

Specifically, the patchwise learned regularizer first divides the input image into overlapping patches,
subtracting the mean from each patch (a standard preprocessing technique in patch-based methods
[16]), and passing each mean-subtracted patch through the learned component (e.g., neural network).
The original patch means are added to the regularizer outputs, which are recombined.

3 Experiments

Figure 2 compares the presented learning-based methods at different training set sizes. Methods
that do not incorporate the forward model, like ResAuto and CSGM, appear not to perform well in
the low-sample regime. We also demonstrate that patchwise regularization enables reconstruction
of large images with very small training sets. In this experiment, the training set consists only of a
single clean image, taken from the SpaceNet dataset [17].Test PSNR is 31.90± 1.42 dB for the 8x8
patchwise regularized NN, and 18.34± 1.31 for the full-image regularized NN across a test set of
size 64. Fig. 3 contains some sample reconstructions of an image from the test set.

(a) Original (b) Blurred (c) 8x8 NN (d) Full NN
PSNR: 30.87 dB PSNR: 17.75 dB

Figure 3: Single-image Training Sample Reconstruction. Local regularization enables competitive recon-
struction quality even with a single training image, while unrestricted training on a single image results in a
poor-quality, noisy reconstruction. The inverse problem in this case is Gaussian deblurring with kernel of size
9× 9 and variance σ2 = 2 with additive noise level 0.03.

4 Conclusion

This work explores the Neumann network architecture to solve linear inverse problems, which can
be interpreted as an approximation of the MSE optimal reconstruction according to our Proposition
1. The Neumann network architecture also permits a learned patchwise regularizer, which learns
the low-dimensional conditional distributions over image patches instead of the whole image. The
Neumann network is empirically competitive with other state-of-the-art methods for inverse problems
in imaging, and we demonstrate the ability to learn to regularize from a single training pair.
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